Course Title	Solid Me	chanic	cs - 2				В. Те	ech, CE 5 th	Semester					
Course	Category	L	Т	Р	Credits		Maximum	n Marks						
Code						Continu	ious Internal	End	Total					
						Ass	sessment	Exam						
1801501	PCC	02	01	00	03		30	70	100					
Mid Exan	n Duration: (ration: 02.00 Hrs End Exam Duration: 03.00 Hrs												
Course O	bjectives:													
1 0		1 • .	morridoa	thour	derstandin	of nrine	cipal stress, str	ains and th	eories of					
I. Stu	idy of the su	bject p	iovides	une un	ucistanum	is or prin		anis and u	001100 01					
1. Stu fail	idy of the su lure.	bject p	iovides	uie uii	ucistanum	g or prin								
1. Stu fail 2. Un	idy of the su lure. iderstand the	bject p differe	ence be	tween t	hin and th	ick cylind	ers.							
1. Stu fail 2. Un 3. Ab	idy of the su lure. iderstand the bility to ident	bject p differe	ence ber differen	tween t nt types	hin and the	ick cylind	ers. 1ts.							
1. Stu fail 2. Un 3. Ab 4. Ca	idy of the su lure. Iderstand the ility to ident n determine	e differe ify the the dire	ence be differen ect and	tween t types bendin	hin and the of column g stresses.	ick cylind	ers. 1ts.							
 Stufail Un Un Ab Ca To 	idy of the su lure. iderstand the ility to ident n determine estimate the	e differe ify the the dire stresse	ence be differen ect and es due t	tween t types bendin o unsyr	hin and th of column g stresses. nmetrical l	ick cylind is and stru bending	ers. 1ts.							
1. Stu fail 2. Un 3. Ab 4. Ca 5. To Course O	idy of the su lure. iderstand the ility to ident n determine estimate the Dutcomes: C	e differe ify the the dire stresse on succ	ence be differen ect and es due t essful c	tween t at types bendin o unsyr omplet	hin and the of column g stresses. nmetrical l ion of this	ick cylind is and stru bending course, tl	ers. uts. ne student will	be able to						
1. Stu fail 2. Un 3. Ab 4. Ca 5. To Course O CO 1	idy of the su lure. iderstand the ility to ident n determine estimate the Dutcomes: C Understand	bject p differe ify the the dire stresse on succ the cor	ence ber differen ect and es due t essful c ncept of	tween t at types bendin o unsyr omplet	hin and the of column g stresses. nmetrical l ion of this principal s	ick cylind ns and stru bending course, tl stresses, s	ers. uts. ne student will trains.	be able to						
1. Stufail 2. Ur 3. Ab 4. Ca 5. To Course O CO 1 CO 2	idy of the su lure. Iderstand the bility to ident n determine estimate the Dutcomes: C Understand Determine the	e differe ify the the dire e stresse on succ the cor he hoop	ence ber differen ect and es due t essful c ncept of p and lo	tween t at types bendin o unsyr omplet stress, ongitud	hin and the of column g stresses. nmetrical l ion of this principal s inal stresse	ick cylind ns and stru- bending course, th stresses, si es in thin a	ers. 1ts. he student will trains. and thick cylin	be able to ders.						
1. Stu fail 2. Un 3. Ab 4. Ca 5. To Course O CO 1 CO 2 CO 3	idy of the su lure. iderstand the ility to ident n determine estimate the Dutcomes: C Understand Determine the Identify the	e differe ify the the dire e stresse On succ the cor he hoo behavio	ence ber differen ect and es due t essful c ncept of p and lo or of co	tween t at types bendin o unsyr omplet stress, ongitud lumns	hin and the of column g stresses. mmetrical l ion of this principal s inal stresse and apply	ick cylind is and stru- bending course, the stresses, si es in thin a the Euler	ers. ats. he student will trains. and thick cylin equation.	be able to ders.						
1. Stufail 2. Un 3. Ab 4. Ca 5. To Course O CO 1 CO 2 CO 3 CO 4	idy of the su lure. iderstand the ility to ident n determine estimate the outcomes: C Understand Determine the Identify the Understand	e differe ify the the dire stresse On succ the cor he hooj behavio the cor	ence ber different ect and es due t essful c ncept of p and lo or of co ncept of	tween t it types bendin o unsyr omplet stress, ongitud lumns	hin and the of column g stresses. nmetrical l ion of this principal s inal stresse and apply stress and	ick cylind is and stru- bending course, the stresses, s es in thin a the Euler bending s	ers. uts. ne student will trains. and thick cylin equation. stresses	be able to ders.						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	3											3		
CO 2	1														
CO 3	2												3		
CO 4		3													
CO 5	2														

Unit - 1 Principal Stresses and Strains

Introduction – Stresses on an inclined section of a bar under axial loading – Compound stresses – Normal and tangential stresses on an inclined plane for biaxial stresses – Two perpendicular normal stresses accompanied by a state of simple shear – Mohr's circle of stresses – Principal stresses and strains – Analytical solutions.

Theories of Failures: Various Theories of failures like Maximum Principal stress theory – Maximum Principal Strain theory – Maximum shear stress theory – Maximum strain energy theory – Maximum shear strain energy theory.

Unit - 2 Thin Cylinders

Thin seamless cylindrical shells – Derivation of formula for longitudinal and circumferential stresses – Hoop, longitudinal and volumetric strains – Changes in diameter, and volume of thin cylinders– Thin spherical shells.

Thick Cylinders: Introduction Lame's theory for thick cylinders – Derivation of lame's formulae – Distribution of hoop and radial stresses across thickness – Design of thick cylinders – Compound cylinders – Thick spherical shells.

Unit - 3 Columns and Struts

Introduction – Types of columns – Short, medium and long columns – Axially loaded compression members – Crushing load – Euler's theorem for long columns – Assumptions – derivation of Euler's critical load formulae for various end conditions – Equivalent length of a column –

Slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formula – Long columns subjected to eccentric loading – Secant formula – Empirical formula – Straight line formula – Prof. Perry's formula.

Unit - 4 Direct and Bending Stresses

Stresses under the combined action of direct loading and B.M - Core of a section - Circular, rectangular and triangular (solid and hollow) - Stresses due to direct loading and B.M about both axis.

Unit - 5 Unsymmetrical Bending

Introduction – Centroidal principal axes of section – Moments of inertia referred to any set of rectangular axes – Stresses in beams subjected to unsymmetrical bending – Principal axes – Resolution of bending moment into two rectangular axes through the centroid - Location of neutral axis.

Textbooks:

- 1. R. K. Rajput, "A Textbook of Strength of Materials", S. Chand Publishing, New Delhi.
- 2. R. K. Bansal, "A Textbook of Strength of Materials", Laxmi Publications, New Delhi.

- 1. S. S. Bhavikatti, "Strength of Materials", Vikas Publishing, Noida.
- 2. S. P. Timoshenko and D. H. Young, "Elements of Strength of Materials", Eastern Wiley Publications, Noida.
- 3. D. S. Prakash Rao, "Strength of Materials A Practical Approach", Universities Press (India) Private Ltd., Hyderabad.
- 4. B.C. Punmia, Ashok Kumar Jain and Arun Kumar Jain, "Mechanics of Materials", Laxmi Publications, New Delhi.

Co 1	ourse Title	Hyd	rauli	c Mae	chine	ry					F	B. Tech,	, CE 5 th	Semest	ter
Co	ourse	Cate	gory	L	Т	I	2 (Credits		i	Maxir	num M	arks		
C	lode								Cor	ntinuou	s Intern	nal	End	Tota	ıl
										Assess	ment]	Exam		
180	01502	PC	C	02	00	0	0	02		30)		70	100)
Mic	l Exan	n Durat	tion: ()2.00 I	Irs]	End Ex	am Du	ration:	03.00 H	Irs
Co	urse C)bjectiv	ves:												
	1. To	under	stand	the a	pplica	tion o	of mo	mentu	n prin	ciple o	of impa	ct of j	ets on	plain a	nd
	cu	rved su	rfaces	5					-	-	_			-	
	2. To	study	dy the types of centrifugal pumps, work done and efficiency of the different types												
	ce	ntrifuga	ıl pun	nps an	d also	study	about	perfor	mance	e of pur	nps and	l charae	cteristic	curves	
	3. То	study :	about	speci	fic spe	ed and	d perfe	ormano	e char	acterist	ics of d	lifferen	t types (of	
	tui	bines		-			-								
	4. To	study :	about	hyd r o	electr	ic pow	ver pla	int and	estima	ation of	hydro	power p	ootentia	l	
	5. To	explain	n the	conce	pt of p	ositiv	e disp	laceme	nt						
Co	urse C	Outcom	nes: ()n suc	cessfu	l com	oletion	n of thi	s cours	se, the s	student	will be	able to		
CO	1	Calcula	te fo	rce and	l work	k done	by a	et on f	ixed or	r movir	ng plate	and cu	rved pl	ates	
CO	2	Apply	the w	orking	princ	iples c	of imp	ulse an	d react	tion tur	bines		÷		
CO	3	Select	the t	vpe o	f turb	ine re	quire	d with	refere	ence to	availa	ble hea	nd of v	vater a	nd
		dischar	ge	71			1								
CO	4	Detern	nine t	he cha	racter	istics o	of cen	trifugal	pump)					
CO	5	Apply	the w	orking											
	~ 1	- FF-7		3) <u>r</u> 0	F 0			8	rp					
Ds	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSC
1 ר	<u>^</u>	2					1	1				İ	2	1	1

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	3											3		
CO 2		2													
CO 3		2													
CO 4		1											3		
CO 5		2											3		

Unit – 1

Momentum Equations and Force of Jet on Vanes Linear momentum equation and its application to find the force of jet on vanes – Vanes: stationary and moving, flat and curved, jet striking at centre and edge, series of flat and curved vanes – Velocity triangles: at inlet and outlet of vanes, calculation of work-done and efficiency; Moment of momentum equation, theory of turbo-machinery

Unit – 2

Pelton, Francis and Kaplan Turbines Hydraulic Turbines: general layout of hydro-electric power plants, classification of turbines; Pelton, Francis and Kaplan turbines: working principle, parts, work done, efficiency, setting, working proportions and design; Degree of reaction; Draft tube: principle, types, efficiency

Unit – 3

Performance and Unit Quantities of Turbines Performance of Turbines: efficiencies of turbines, operation under constant head and speed, main characteristic curves, operating characteristic curves, constant efficiency curves; Unit quantities: working under varying condition, unit speed, unit discharge, unit power, use of unit quantities; Specific speed: concept of homologous units, specific speed, selection of turbines – Cavitation

Unit – 4

Centrifugal Pumps Centrifugal Pumps: working principle, types, parts, setting, work done – Performance: heads and efficiencies, main characteristic curves, operating characteristic curves, constant efficiency curves – Priming – Minimum starting speed – Multistage pumps – Specific speed – NPSH and cavitation

Unit – 5

Reciprocating Pump and Miscellaneous Hydraulic Machines Reciprocating pump: working principle, types, parts, setting, discharge, work done – Slip – Indicator diagram – Air vessels; Miscellaneous hydraulic machines: hydraulic press, hydraulic accumulator, hydraulic intensifier, hydraulic ram

Textbooks:

- 1. P. N. Modi and S. M. Seth, "Hydraulics and Fluid Mechanics Including Hydraulics Machines", Standard Book House U-O Rajsons Publications Pvt. Ltd., New Delhi.
- 2. R. K. Bansal, A textbook of Fluid Mechanics and Hydraulic machinery, Laxmi Publications (P)Ltd., New Delhi.

- 1. Jagadish Lal, "Hydraulic Machines", Metropolitan Book Co. Pvt., .Ltd. New Delhi.
- 2. Miroslav Nechleba, "Hydraulic Turbines", Constable & Co. Ltd., London.

Course Title	Structura	l Anal	ysis –	1			В. Те	ch, CE 5 th	Semester
Course	Category	L	Т	Р	Credits	Ν	laximum	Marks	
Code						Continuous I	nternal	End	Total
						Assessme	ent	Exam	
1801503	PCC	02	01	00	03	30		70	100
Mid Exan	n Duration: 0	2.00 H	rs			En	d Exam I	Duration: (03.00 Hrs
Course C	Objectives:								
1. Sti	udents under	stand	the prin	nciples	and analy	sis of structur	es like fi	ixed & Co	ontinuous
Be	ams, Energy	theore	ms by v	various	methods.				
Course C	Outcomes: C	n succ	essful c	omplet	ion of this	course, the stu	dent will	be able to	
CO 1	Analyze fixed	& Con	tinuous	beams f	for shear, be	ending moment a	and deflec	tions	
CO 2	Analyze secor	nd and t	hird deg	gree stat	ically indete	rminate beams u	ising MD	& SD Meth	nods
CO 3	Determine de	flection	of bean	n and tr	usses using	energy methods	•		

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1		3											3		
CO 2		3											3		
CO 3		3											3		

Unit - 1 Fixed Beams

Introduction to statically indeterminate Beams with UDL, central point load, eccentric load, number of point loads, uniformly varying loads, couple and combination of loads- shear and bending moment diagrams-deflection of fixed Beams, effect of sinking of support, effect of rotation of support.

Unit - 2 Continuous Beams

Introduction-Clapeyrons theorem of three moments- analysis of continuous Beams with constant moment of inertia with one or both ends fixed-continuous beams with over hanging.

Unit - 3 Slope Deflection Method

Introduction, derivation of slope deflection equations, application to continuous beams with and without sinking of supports.

Unit - 4 Moment Distribution Method

Introduction, application of continuous beams with and without sinking of supports.

Unit - 5 Energy Theorems

Introduction, strain energy in linear elastic system, expression of strain energy due to axial load, Bending moment and shear forces- castiglianos first theorem-deflection of simple Beams.

Textbooks:

- 1. CS Reddy, "Basic Structural Analysis" Disaster Risk Reduction in South Asia", Tata McGraw-Hill Companies, Inc. New York.
- 2. S. S. Bhavikatti, "Structural Analysis Vol.1 & Vol.2", Vikas Publishing, Noida.

Reference Books:

1. S. Ramamrutham and R. Narayan, "Theory of Structures", Dhanpat Rai Publishing Company, New Delhi.

Course Title	Geotech	nical E	Engine	ering			В. Те	ch, CE 5 th	Semester					
Course	Category	L	Т	Р	Credits		Maximum	Marks						
Code						Continu	ious Internal	End	Total					
						Ass	essment	Exam						
1801504	- PCC	02	01	00	03		30	70	100					
Mid Exa	m Duration: (0 2 .00 H	rs				End Exam I	Duration:	03.00 Hrs					
Course (Objectives: 'I	jectives: The course is designed to students,												
1. T	o create an ab	ility to	apply k	nowled	lge of geot	echnical e	engineering.							
2. T	o accentuate	the u	ndersta	nding	of the ba	asic princ	iples of soil	mechanics	s and its					
ap	oplication to s	olve pi	oblems	related	l to geotec	hnical eng	gineering.							
3. T	o improve the	e basic	underst	anding	of the ind	ex and eng	gineering prop	erties of so	oils					
4. T	o improve the	e conce	pts to ı	inderst	and the hy	draulic be	havior of the s	oils						
Course (Outcomes: C	n succ	essful c	omplet	ion of this	course, th	ne student will	be able to						
CO 1	Identify and	tabulat	e differ	ent typ	es of soils	and their	properties.							
CO 2	Calculate an	d illust	rate the	e perme	eability cha	aracteristic	es of soils, see	page quan	tities and					
	pore water p	ressure	es belov	v the gr	ound.									
CO 3	Analytically	compu	ite the	vertica	l stress in	a semi-i	nfinite soil m	ass due to	o various					
	loading cond	litions.												
CO 4	Understand	and in	terpret	the con	npaction o	curve with	compaction of	effort, soil	type and					
	the basic me	chanis	n of co	nsolida	tion of soi	ls.								
CO 5	Determine 1	he she	ar stre	ngth p	arameters	by analyti	ically and grap	phically fo	r various					
	geotechnical	proble	ems.					-						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2												3		
CO 2		3											2		
CO 3						2							2		
CO 4				2									3		
CO 5		3											3		

Unit - 1 Soil and its Index Properties

Soil formation – soil structure and clay mineralogy – Adsorbed water – Mass- volume relationship – Relative density - Moisture Content, Specific Gravity, In-situ Density, Grain size analysis – Sieve and Hydrometer methods – consistency limits and indices – Tests for field identification and classification of soils - I.S. Classification of soils

Unit - 2 Permeability and Seepage through Soils

Permeability: Soil water – capillary rise – flow of water through soils – Darcy's law- permeability – Factors affecting – laboratory determination of coefficient of permeability – Field determination of permeability - Permeability of layered systems

Seepage through Soils: Total, neutral and effective stresses – quick sand condition – Seepage through soils – Flownets: Characteristics and Uses.

Unit – 3 Stress Distribution in Soils

Boussinesq's equation - Vertical stress due to line load, strip load, and uniformly loaded circular area and Wester Gaard's theories for point loads and areas of different shapes – Pressure bulb concept -Newmark's influence chart – Approximate methods

Unit – 4 Compaction and Consolidation

Compaction: Mechanism of compaction – factors affecting – effects of compaction on soil properties – Field compaction Equipment - compaction quality control

Consolidation: Pressure – void ratio curve – Compression index – Coefficient of Compressibility – Modulus of volume change – Consolidation process – Consolidation settlement - Terzaghi's theory of one dimensional consolidation – coefficient of consolidation – Pre-consolidation pressure – Normally consolidated and over consolidated soils.

Unit – 5 Shear Strength of Soils

Mohr – Coulomb Failure theories – Types of laboratory strength tests – strength tests based on drainage conditions – Shear strength of sands – Critical Void Ratio – Liquefaction- shear strength of clays.

Textbooks:

- 1. Dr. K R Arora "Soil Mechanics & Foundation Engineering", Standard Publishers Distributers, New Delhi.
- 2. B C Punmia, Ashok Kumar Jain & Arun Kumar Jain "Soil Mechanics & Foundation Engineering", Lakshmi Publications, New Delhi.

- 1. C Venkatramaiah "Geotechnical Engineering", New Age International (P) Limited, Publishers, New Delhi.
- 2. JA Knappett and RF Craig "Craig's Soil Mechanics", Spons Press, New York.

Course Title	Environr	nental	Engir	neering	5		B. Te	ch, CE 5 th	Semester					
Course	Category	L	Т	Р	Credits		Maximum	Marks						
Code						Continu	ious Internal	End	Total					
						Ass	sessment	Exam						
1801505	PCC	02	00	00	02		30	70	100					
Mid Exam	Duration: (2.00 H	rs				End Exam I	Duration: ()3.00 Hrs					
Course O	ojectives:													
1. Th	is subject pr	jectives: subject provides the knowledge of water sources, standards, treatment of water for												
dis	tribution to 1	the dor	nestic p	ourpose	. Basics of	plumbing	g are also inclu	ded.						
Course O	utcomes: C	n succ	essful c	omplet	ion of this	course, th	ne student will	be able to						
CO 1	Get an idea (of wate	r suppl	y and it	s developr	nent, need	d, objectives to	the public	2.					
CO 2	Know the so	ources,	Quality	and St	andards of	water.								
CO 3	An acquainta	ince wi	th diffe	erent tre	eatments fo	or protect	ed water suppl	y.						
CO 4	Advanced w	ater tre	atment	s in ren	noval of ha	ırmful cor	nstituents and v	water man	agement.					
CO 5	Different wa	ter dist.	ributio	n syster	n, its work	ing and th	he basics of plu	umbing.						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1			2												
CO 2			2											2	
CO 3						2									
CO 4							3								
CO 5						2								3	

Unit - 1 Introduction

Environmental Engineering - Role of Environmental Engineer - Water supply - Development of public water supply - Need for protected water supplies - Objectives of water supply systems - Water supply scheme - Quantity of water - Estimating requirements - Design period – Per Capita Consumption - Fluctuations in demand pattern -population forecast – Arithmetic, Incremental, Geometric methods.

Unit - 2 Sources, Quality and Standards of Water Sources of water

Surface and ground water sources – Quality of water - Physical, chemical and biological aspects - Analysis of water - Water quality standards - Impurities in water - Waterborne diseases – Drinking water quality standards.

Unit - 3 Treatment of Water

Flowchart of water treatment plant - Treatment methods (Theory and Design) – Sedimentation - Coagulation - Sedimentation with Coagulation – Filtration - Chlorination and other Disinfection methods - Softening of Water – Defluoridation - Removal of Odors.

Unit - 4 Advanced Water Treatments

Principles and functions of Aeration - Iron and manganese removal, Defluoridation and demineralization -Water softening - Desalination - Membrane Systems - Recent advances.

Water Management: Sustainable Development - Rain Water harvesting methods - Water Pollution - Causes and effects

Unit - 5 Water Distributions

Distribution systems – Requirements, Layout of Water distribution systems - Design procedures-Hardy Cross and equivalent pipe methods service reservoirs – Joints, valves such as sluice valves, air valves, scour valves and check valves water meters – Laying and testing of pipe lines – Pump house, waste detection and prevention, Principles of design of water supply in buildings - House service connection.

Textbooks:

- 1. S K Garg, "Environmental Engineering Vol.1", Khanna Publishers, New Delhi.
- 2. B C Punmia, Ashok Kumar Jain and Arun Kumar Jain "Water Supply Engineering", Laxmi Publications, New Delhi.

- 1. H S Peavy, D R Rowe and G Tehobanoglous "Environmental Engineering", Tata McGraw-Hill Companies, Inc. New York.
- 2. S K Hussain "Water Supply and Sanitary Engineering", Oxford & IBH, New Delhi.

Course Title	Transpor	tation	Engir	ieering	r 2		В. Те	ech, CE 5 th	Semester
Course	Category	L	Т	Р	Credits		Maximum	n Marks	
Code						Continu	10us Internal	End	Total
						Ass	sessment	Exam	
1801506	PCC	02	00	00	02		30	70	100
Mid Exar	n Duration: (2.00 H	rs				End Exam	Duration:	03.00 Hrs
1. Tl de m Course (his course is t sign of diffe anagement ar Dutcomes: C	taught rent el nd pave On succ	to impa ements ement de essful c	rt the l of hig esign omplet	knowledge hway, diff	in highw erent traf course, th	ay planning, a fic surveys, tr he student will	lignment, § affic regula be able to	geometric ation and
CO 1	Conduct dis projects.	fferent	engine	ering	surveys at	nd take	up different	highway a	alignment
CO 2	Design high	way pa	vement	geome	trics.				
CO 3	Collect traffi	c data,	analyze	the da	ta and desi	ign suitab	le traffic mana	gement sys	stems
CO 4	Do structura	l desig	n of flex	xible ar	nd rigid pav	vements.			
CO 5	Conduct lab adaptability	porator for diff	y tests erent pa	on pa	avement r at construc	naterials tion.	to evaluate t	heir suital	oility and

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1		2											3		
CO 2		3											3		
CO 3		3											3		
CO 4		3											3		
CO 5		2													

Unit - 1 Highway Development and Planning

Highway development in India – Necessity for Highway Planning – Different Road Development Plans – Classification of Roads – Road Network Patterns – Highway Alignment – Factors Affecting Alignment-Engineering surveys.

Unit – 2 Highway Geometric Design

Importance of Geometric Design - Highway Cross Section Elements-Sight Distance Elements -Stopping sight Distance, Overtaking Sight Distance and intermediate Sight Distance - Design of Horizontal Alignment - Design of Super elevation-Design of Transition Curves -Design of Vertical alignment – Gradients – Vertical curves.

Unit – 3 Traffic Engineering

Basic Parameters of Traffic -Volume, Speed and Density– Highway capacity-Traffic Volume Studies - Speed studies - Road Accidents – Condition Diagram and Collision Diagrams.

Traffic Regulation and Management: Road Traffic Signs – Road markings - Types of Road Markings- Design of Traffic Signals – Webster Method –Saturation flow – Phasing and timing diagrams – Numerical problems.

Unit – 4 Pavement Design

Types of pavements – Difference between flexible and rigid pavements – Pavement Components – Functions of pavement components – Design Factors – Design methods – IRC methods only (as per IRC 37-2002) – Design of Rigid pavements – Critical load positions – Westergaard's stress equations – Stresses in rigid pavements

Unit - 5Highway Materials and construction practice

Desirable Properties and Testing of Highway Materials-Aggregate-Crushing, Abrasion, Impact Tests, Water absorption, Flakiness and Elongation indices-Tests on Bitumen-Penetration, Ductility, Viscosity and Softening point Tests-Construction Practice-Water Bound Macadam Road, Bituminous Road and Cement Concrete Road [as per IRC and MORT&H specifications]-Highway Drainage.

Textbooks:

1. S K Khanna, C E G Justo and A. Veeraragavan "Highway Engineering", Nemchand Publications, New Delhi.

- 1. G V Rao "Principles of Transportation and Highway Engineering", Tata McGraw-Hill Companies, Inc. New York.
- 2. L R Kadiyali "Principles and Practice of Highway Engineering", Khanna Publishers, New Delhi.
- 3. Partha Chakroborthy, Animesh Das, "Principles of Transportation Engineering", Prentice Hall of India, New Delhi.
- 4. S P Bindra "Highway Engineering", Dhanpath Rai& Sons, New Delhi.

Title	Advanced Methods	d Stru	ıctural	Anal	ysis by	Matrix	В. Те	ch, CE 5 th	Semester
Course	Category	L	Т	Р	Credits		Maximum	Marks	
Code						Continu	ous Internal	End	Total
						Ass	essment	Exam	
1801507	PEC 1	02	00	00	02		30	70	100
Mid Exar	n Duration: 0	2.00 H	rs				End Exam I	Duration: (03.00 Hrs
1. To ind 2. To 3. Us 4. In	o introduce determinate s o understand se and/or dev iterpret the ou	stiffno tructur the bas velop st utput fr	ess me es. fics of f tructura	inite ele analys	and flexi ment met is softwar based ana	bility me hod and a e to analyz lyses for th	thod for an pplication to s the complicated the purpose of	alysis of tructural a structural structural	statically nalysis. systems. design
	Jutcomes: ()	n succ	esstul c	ompleti	on of this	course, th	e student will	be able to	
Course (• •				
Course (CO 1	Analyze stati using Flexibi	cally in lity me	ideterm thod	inate be	eams, rigio	l jointed a	nd pin jointed	l frames ar	nd trusses

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1		3											3		
CO 2		3											3		

Unit - 1 Introduction to Matrix methods

Introduction, coordinate systems, displacement and force transformation matrices, element and structure stiffness matrices, Element and structure flexibility matrices, equivalent joint loads, stiffness and flexibility approaches.

Unit - 2 Matrix methods for beams

Analysis of beams, fixed and continuous beams by flexibility method. Analysis of beams, fixed and continuous beams by stiffness method.

Unit – 3 Matrix methods for Plane truss problems

Analysis of 2-D trusses by flexibility method, Analysis of 2-D trusses by stiffness method

Unit - 4 Matrix methods for Plane Frames

Analysis of 2-D frames by Flexibility matrix methods.

Unit – 5 Matrix methods for Plane Frames

Analysis of 2-D frames by Stiffness matrix methods.

Textbooks:

- 1. G. S. Pandit and S. P. Gupta, "Matrix Methods of Structural Analysis", Tata McGraw-Hill Companies, Inc. New York.
- 2. M W Weaver and Gere, "Matrix Analysis of framed Structures", Van Nostrand Reinhold.

- 1. Devdas Menon, "C.K Wang Advanced Structural Analysis", Narosa Publishing House.
- 2. Asslam Kassimali, "Matrix Analysis of Structures", Brooks/Cole Publishing Co., USA.
- 3. C.K Wang, "Analysis of Indeterminate Structures", Tata McGraw-Hill Companies, Inc. New York.

Course Title	Pre-Stres	sed Co	oncret	e			B. Te	ch, CE 5 th	Semester
Course	Category	L	Т	Р	Credits		Maximum	Marks	
Code						Continu	ous Internal	End	Total
						Ass	essment	Exam	
1801508	PEC 1	02	00	00	02		30	70	100
Mid Exar	n Duration: () 2. 00 H	ſrs				End Exam I	Duration:	03.00 Hrs
Course (Objectives:								
1. To	o give idea o	n meth	ods av	ailable	on pre-str	essed con	crete and anal	lysis of pro	e-stressed
m	embers and d	lesign c	of mem	bers.					
Course (Outcomes: C)n succ	essful c	omplet	ion of this	course, th	ne student will	be able to	
CO 1	Calculate th	e effec	t of pr	estressi	ng on sta	tically det	erminate strue	ctures and	statically
	indeterminat	te struc	tures.						
CO 2	Design, anal	ysis, de	tailing a	and cor	struction o	of prestres	ssed concrete s	structural.	
CO 3	Distinguish	betwee	n pre-te	ensionii	ng technolo	ogy and po	ost-tensioning	technolog	у.
CO 4	List the diffe	erences	betwee	n pre-	and post-te	ensioned s	systems for str	uctural	
CO5	Design and	naluze	nrestre	and co	noroto on c	1	a ma o nito atr		

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1		2													
CO 2		3											3		
CO 3		2													
CO 4		2													
CO 5		3											3		

Unit - 1 Introduction and Systems of Pre-Stressing

Introduction: General Principles of Pre-Stressed Concrete Members – Advantages and Limitations of Pre-Stressed Concrete – Comparison of Pre-Stressed Concrete Beams with Reinforced Concrete Beams.

Systems of Pre-Stressing: Classification of Pre-Stressed Concrete Members, System of Pre-Stressing, Pre-Tensioned System, Stability of the System. Hoyer System, Magnel Blaton System, Freyssinet System, Gifford Udall System, P.S.C Mono Wire System, C.C.L Standard System, LEE-MCCALL System.

Unit - 2 Losses of Pre-Stresses

Loss of Pre-Stress in Pre-Tensioned and Post-Tensioned Due to Various Causes Like Elastic Shortening of Concrete, Shrinkage of Concrete, Creep of Concrete, Relaxation of Stress in Steel, Slip in Anchorage Bending of Member and Wobble Frictional Losses.

Unit - 3 Analysis and design of sections for flexure

Assumptions, Analysis by Stress Concept – Elastic Analysis of Concrete Beams Pre-Stressed with Straight, Concentric, Eccentric, Bent and Parabolic Tendons – Design of Pre-Stressed Concrete Beams – I.S Recommendations as per IS 1343 Code Book – Design of Rectangular and an I-Section of a Beam – Lever Arm Concept – Kern Distance.

Unit - 4 Shear Design of PSC Beam

Design of Shear based on IS 1343 Code Book - Design of Beam.

Unit - 5 Deflections of Pre-Stressed Concrete Beams

Importance of Control of Deflections – Factors Influencing Deflections – Short Term Deflections of Un-cracked Members Prediction of Long Term Deflections.

Textbooks:

- 1. S Ramamrutham "Pre-Stressed Concrete", Dhanpat Rai Publishing Company (P) Limited, New Delhi.
- 2. N Krishna Raju "Pre-Stressed Concrete", Tata McGraw-Hill Companies, Inc. New York.
- 3. N Rajagopalan "Pre-Stressed Concrete", Narosa Publishing House, New Delhi.

Reference Books / IS Codes:

1. IS 1343-2012 "Indian Standard Code of Practice for Prestressed Concrete", Bureau of Indian Standards, New Delhi.

Course Title	Ground	Impro	vemer	nt Tec	hniques		В. Те	ch, CE 5 th	Semester
Course	Category	L	Т	Р	Credits		Maximum	Marks	
Code						Continue	ous Internal	End	Total
						Asse	essment	Exam	
1801509	PEC 1	02	00	00	02		30	70	100
Mid Exar	n Duration: (2.00 H	lrs				End Exam	Duration: (03.00 Hrs
Course C	D bjectives: T	he cou	rse is d	esigned	l to studen	ts,			
1. T	o learn and u	ndersta	und vari	ous gro	ound impro	ovement te	chnique.		
2. T	o learn variou	is meth	nod of c	compac	tion for gr	ound impr	ovement in it	s strength.	
3. T	o learn variou	is phys	ical and	l chemi	cal modifie	cation for g	ground impro	vement	
4. T	o learn the m	ethod	to choo	se the	foundation	and or tre	atment meth	od based o	on the site
C	ondition								
Course C	Dutcomes: C	n succ	essful c	omplet	ion of this	course, th	e student will	be able to	
CO 1	Select the g	round	improv	ement	technique	which is	suitable and	economica	l for soil
	strengthenin	g.	1		1				
CO 2	Select differe	ent tecl	nniques	based	on the vari	ous types o	of soils in-situ	L.	
CO 3	Design reinf	orced e	earth sti	ucture	5.				
CO 4	Exposed to 1	the kno	wledge	00 1186	e of geosyn	thetic mat	orial		

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1		2											3		
CO 2		2											3		
CO 3		2											3		
CO 4		2													

Unit – 1

In-situ densification methods in granular soils, Vibration at the ground surface, Impact at the Ground surface, Vibration at depth, Impact at depth. In-situ densification methods in cohesive soils, Preloading, Dewatering, Drain wells, Sand drains, Sandwich geodrains, Stone columns, Lime columns, Thermal methods.

Unit – 2

Reinforced earth principles, Components of reinforced earth walls, Factors governing design of reinforced earth walls, Design principles of reinforced earth walls.

Unit – 3

Geotextiles: Introduction, Type of geotextiles, Function and their application, tests for geotextile materials, Geogrids, Functions of geogrids. Expansive soils, Problems in Expansive soils, Mechanism of swelling, swell pressure, swell potential, Heave, Tests for identification, I. S. Test Methods of determination of swell pressure, Foundation techniques in Expansive soils.

Unit – 4

Mechanical stabilization: Soil aggregate mixtures, Properties and proportioning techniques, soft aggregate stabilization, compaction, Field compaction control. Cement stabilization: Mechanism-Factors affecting and properties, Uses of additives, Design of soil-cement mixtures, Construction techniques.

Unit – 5

Lime and Bituminous stabilization: Types of admixtures, Mechanism, Factors affecting, Design of mixtures, Construction methods.

Textbooks:

- 1. Dr. P. Purushothama Raj., "Ground Improvement Techniques", Lakshmi Publications Pvt. Ltd.
- 2. Jones, J.E.P., Earth Reinforcement and Soil Structure, Butterworths, 1985.
- 3. Koerner, R.M. and Welsh, J.P., Construction and Geotechnical Engineering using Synthetic Fabrics, John Wiley, 1990.
- 4. Koerner, R.M., Designing with Geosynthetics (Third Edition), Prentice Hall, 1997.

- 1. Moseley, M.D., Ground Treatment, Blackie Academic and Professional, 1998.
- 2. Hehn, R.W., Practical Guide to Grouting of Underground Structures, ASCE, 1996.
- 3. Das, B.M., Principles of Foundation Engineering, (Fourth Edition). PWS Publishing, 1999

Course Title	Remote S	Sensin	g and	GIS			B. Te	ech, CE 5 th	Semester
Course	Category	L	Т	Р	Credits		Maximum	Marks	
Code						Continu	ious Internal	End	Total
						Ass	sessment	Exam	
1801510	PEC 1	02	00	00	02		30	70	100
Mid Exar	n Duration: (2.00 H	[rs				End Exam	Duration: (03.00 Hrs
Course C	Objectives:								
1. T	he purpose o	of this	course	is to	provide an	n underst	anding of phy	ysical cond	cepts and
u	nderlying van	ious e	ngineer	ing an	d technolo	ogical ap	plications in a	remote se	nsing. In
ac	ldition, the c	ourse i	s expec	ted to u	understand	the basic	principles of	remote ser	nsing and
its	s applications								
Course C	Dutcomes: C	n succ	essful c	omplet	ion of this	course, th	ne student will	be able to	
CO 1	Perceive the	basics	of remo	ote sens	sing.				
CO 2	Pick out the	charac	teristics	of the	instrumen	ts used fo	or remote sensi	ng.	
CO 3	Analyze the	need as	nd stand	lard tee	chniques us	sed for in	age processing	יי <u>י</u> ר	
CO 4	Perceive the	basics	of GIS.						
CO 5	Study the are	eas of a	oplicati	on usir	o Remote	Sensing a	nd GIS		

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1															
CO 2															
CO 3				2											
CO 4					2										3
CO 5															3

Unit - 1 Remote Sensing Basics

Introduction to Basic Concepts: Definition – Physics of Remote Sensing – Electro Magnetic Radiation (EMR) – Interaction of EMR with atmosphere, Earth surface features – Vegetation, soils, water – Spectral reflectance curves – Atmospheric windows

Unit - 2 Platforms and Sensors

Remote Sensing Systems: Platforms: Introduction – Types – Satellites and orbits, - Spectral, radiometric and spatial resolutions, temporal resolution of satellites - Some remote sensing satellites and their features.

Unit - 3 Image Processing Techniques

Digital Image Processing: Image enhancement – Contrast stretch, Spatial filtering and edge enhancement; Classification – Supervised unsupervised classification – Visual image interpretation techniques.

Unit - 4 G I S

Geographical Information Systems: Basic Principles – Definition – Components – Data Structures – Raster and Vector formats – Functioning of GIS – Data Input – Data Manipulation – Data Retrieval – Spatial Data Analysis – Computational Analysis Methods (CAM) – Visual Analysis Methods (VAM) - Data Display – Data Base Management Systems.

Unit - 5 Remote Sensing Applications

Remote Sensing Applications: Water shed management - Irrigation Management - Drought Assessment - Environmental Monitoring - other applications.

Textbooks:

- 1. Thomas Lillesand, Ralph W Kiefer and Jonathan Chipman "Remote Sensing and Image Interpretation", John Wiley & Sons, India.
- 2. M Anji Reddy "Remote Sensing & GIS", B.S Publications, Hyderabad.
- 3. C P Lo and Albert K W Yeung "Concepts and Techniques in Geographical Information Systems", Prentice Hall of India, New Delhi.

- 1. Floyd F Sabins Jr. "Remote Sensing Principles and Interpretation", Freeman and Co., San Francisco.
- 2. J R Jensen "Remote Sensing of the Environment: An Earth Resource Perspective", Prentice Hall of India, New Delhi.

Co J	ourse Title	Surface	Hydro	logy					В	8. Tech,	CE 5 th	Semest	er		
Co	ourse	Category	L	Т	Р	Credits			Maxin	num M	arks				
C	Code						Conti	nuous	Interr	nal	End	Tota	ıl		
							А	ssessn	nent	I	Exam				
180	01513	PEC 1	02	00	00	02		30			70	100			
Mic	l Exar	n Duration:	02.00 F	Irs				Е	nd Ex	am Du	ration:	0 3 .00 H	lrs		
Co	urse C	Objectives:													
	1. T	he students	acquire	knowl	edge ab	out hydro	ologic cy	cle, pr	recipita	ation it	s measi	iremen	t		
	ar	d analysis a	long wit	th its ab	stractic	ns	0,	1	1						
	2. St	udents unde	erstand	infiltrat	ion, con	nstitution	of stream	n flow	and h	ydrogra	phs				
	3. T	ne students understand floods, analysis, routing along with its mitigation and													
	m	management													
	4. It	creates awa	ireness	regardi	ng surf	ace water	pollutio	on, cau	ises, p	reventi	on and	remed	ial		
	m	easures		0	0		1	,	1						
	5. T	he students	are m	ade to	under	stand diff	erent di	lisaster	s and	its m	anagem	nent. Ir	1		
	ac	ldition, they	study a	bout cl	imate c	nange, dro	ught and	d wate	r harv	esting	0				
Co	urse C	Jutcomes: (On succ	essful d	complet	ion of this	course,	, the st	udent	will be	able to				
CO	1	Learn abou	t precip	itation	and its :	neasurem	ent, anal	, lvsis ar	nd inte	rpretat	ion.				
CO	2	Know abou	it abstr	actions	to rair	fall. infilt	ration. e	evapor	ation	and tra	nspirat	ion alo	ng		
	_	with their e	stimatic	n and o	lerivatio	on of unit	hvdrogr	aph fr	om hv	drograf	h.		-0		
CO	3	Gain Know	ledoe a	bout flo	ods its	estimatio	n comb	at floc	ods and	d flood	routing) ,			
CO	4	Familiarize	with su	rface w	ater nol	lution car	ises effe	ects an	d rem	edial m	easures	⊃•			
$\frac{00}{00}$. 5	Acquire bo	owledo	e abour	t disast	ers and it	s manao	remen	t con	servatio	n of v	vater a	nd		
	5	climate cha	owicugo	its imr	act on	water reso	urces	Semen	i, con	servau		vater a			
L				103 1111		water 1050	urces.								
)s	PO1	PO2 PO3	PO4	PO5 1	PO6 P0	D7 PO8	PO9 P	PO10	PO11	PO12	PSO1	PSO2	PSC		
			.÷								ļ	÷	4		

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1		2											2		
CO 2		2											2		
CO 3							2								
CO 4							2								
CO 5							2								

Unit – 1 Components of Hydrologic Cycle

Hydrologic Cycle, Precipitation, Cloud Seeding, Rain Gauge Net Work, Estimation of Missing Rainfall Data, Mean Precipitation Over an Area by Arithmetic Mean, Thiessen Polygon and Isohyetal Methods, Checks of Rainfall Data, Double Mass Curve, Evaporation, Transpiration, Methods of Estimation of Evapotranspiration.

Unit – 2 Initial Abstractions & Hydrograph Analysis

Infiltration, Factors affecting Infiltration, Measurement of Infiltration, Infiltration Curve and Infiltration Indices. Runoff: Stream flow Hydrograph, Hydrograph Separation, Unit Hydrograph.

Unit – 3 Hydrology of Floods

Definition: Hydrology of Floods: Causes of Floods, Flood Discharge Formulae and Envelope Curves, Flood Frequency Analysis, Flood Control- Flood Control Dams, Detention Basins, Levees, Diversion Channels, Flood Channel Improvement Schemes. Flood Routing: Routing Through a Reservoir by I.S.D. Method, Channel Routing by Muskingum Method.

Unit – 4 Surface Water pollution

Introduction, Causes of Water Pollution, their Effects, Remedial Measures, Pattern of Pollution, Self-Purification Processes in Streams. Raw and Treated Water Quality Monitoring and Surveillance Including Various Standards.

Unit – 5 Disaster Management

Types of Natural Disasters and Manmade Disasters, Effects of Drought, Combating Drought, Reducing Runoff Losses, Reducing Evaporation and Deep Percolation, Efficient use of Stored Soil Water, Early Warning Systems, Evacuation Plans and Post Disaster Management and Administration, Climate change and its impact on Water Resources, Overview of rain water harvesting.

Textbooks:

- 1. Larry W. Mays., "Water Resources Engineering", John Wiley, 2010.
- 2. P. Jayarami Reddy., "A Text Book on Hydrology", Laxmi Publications, New Delhi.
- 3. H .M. Raghunadh., "A Text Book on Hydrology", New Age International (P) Limited, Publishers, New Delhi.

- 1. U. Aswathanarayana., "Water and Environment", A.A. Balkema Publishers, 2001.
- 2. K. C. Parti., "Hydrology and Water Resources Engineering", Narosa Publishing House, New Delhi.
- 3. A. K. Biswas., "Water Resources-Environment Planning& Development", Tata McGraw-Hill Companies, Inc. New York.
- 4. Wanisliste & Elenlin., "Hydrology Quantity & Quality", John Wiley, 2010.
- 5. Ven Te Chow, Maidenment & Mays., "Applied Hydrology", Tata McGraw-Hill Companies, Inc. New York.

Course Title	Geotech	nical E	Engine	ering l	Laborator	сy	В. Те	ch, CE 5 th	Semester
Course	Category	L	Т	Р	Credits		Maximum	Marks	
Code						Continu Ass	ious Internal sessment	End Exam	Total
1801514	PCC	00	00	02	01		50	50	100
Mid Exan	n Duration: -	-	L				End Exam 1	Duration: (03.00 Hrs
Course O	bjectives:								
1. Te	o introduce	traditio	onal pr	ogram	consisting	mostly	of practical c	ourses rel	ated to
	otechnical er	noineer	ing P1	0814111	comonotanie	, moony	or practical c	041000 101	alea lo
$2 T_{c}$	apply the l	znowle	dae of	science	mathem	tice and	engineering W	ith the cot	ntext of
2. 10	plications in		hpical a	noinoo	, mainema	and and	engineering wi		
ap 2 T		geolec	inncar e	·inginee	1111g.	1.	. 1 . 1 .	1, ,1	-
3. 10	o design and	condu	ict expe	erimeni	ts, analyze	and inter	rpret data relat	ted to the	various
lat	poratory tests	s studie	d in geo	otechni	ical enginee	ering.			
4. To	o classify the	soils b	ased on	the ine	dex and en	gineering	properties		
Course O	utcomes: C	n succ	essful c	omplet	ion of this	course, t	he student will	be able to	
CO 1	An ability to	o use t	he tech	niques	, skills, an	d moder	n engineering	tools nece	essary for
	engineering	practice	2.	-					-
CO 2	An opportur	ity to v	work in	groups	3				
CO 3	An ability 1	to ider	ntify, fo	ormulat	te and pr	actice the	e various soil	identifica	tion and
	classification	tests.			1				
CO 4	An ability to	select.	formul	ate or	enhance th	e testing	facilitates to ca	ter the rec	uirement
	of selection	of pror	er soil	type as	per the rec	uiremen	t.		1
LL		P-0F		- <u>, p</u> = 40	<u>r</u>	1	-		

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1		3											2		
CO 2		3											2		
CO 3				3									2		
CO 4				3									2		

LIST OF EXPERIMENTS

1. Determination of Water Content

Oven drying Method

Pycnometer Method

- 2. Determination of Specific Gravity Pycnometer Method Density Bottle Method
- Particle Size Analysis Dry Sieve Analysis Hydrometer Analysis (Demo)
- 4. Consistency Limits
- 5. Free Swell Index
- 6. Determination of In-Situ Densities Core Cutter Method Sand Replacement Method

Textbooks:

- 1. S Mittal and J P Shukla "Soil Testing for Engineers", Khanna Publishers, New Delhi.
- 2. T G Sitharam and T N Ramamurthy "Geotechnical Engineering", S Chand Publishing, New Delhi.

- 1. Compendium of Indian Standards on Soil Engineering: Part 1 & 2, Laboratory and Field Testing of Soils for Civil Engineering Purposes.
- 2. Dr. K R Arora "Soil Mechanics & Foundation Engineering", Standard Publishers Distributers, New Delhi.

Course Title	Transpor	tation	Engir	neering	g Laborat	ory	B. Tech, CE 5 th Semester				
Course	Category	L	Т	Р	Credits		Maximum	Marks			
Code						Continuous Internal		End	Total		
						Ass	essment	Exam			
1801515	PCC	00	00	02	01	50		50	100		
Mid Exan	Mid Exam Duration: End Exam Duration: 03.00 H										
Course C	bjectives:										
1. Ag	ggregate and	its eng	ineering	g behav	ior						
2. Bi	tumen and it	s engir	leering	behavio	or						
Course C	lutcomes: C	n succ	essful c	omplet	ion of this	course, th	ne student will	be able to			
CO 1	Characterize the pavement materials.										
CO 2	Perform quality control tests on pavement & pavement materials										
CO 3	Identify suitability of different aggregates for various paving jobs										
CO 4	Identify the grade of given bituminous sample.										
CO 5	Able to perf	orm m	arshall	mix de	sign of var	ious bitur	ninous mixes	for differen	nt paving		
	jobs.										

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1		2											2		
CO 2		2											2		
CO 3		2											2		
CO 4		2											2		
CO 5		2											2		

LIST OF EXPERIMENTS

I. ROADAGGREGATES:

- 1. Aggregate Crushing value
- 2. Aggregate Impact Test.
- 3. Specific Gravity and Water Absorption.
- 4. Attrition Test
- 5. Abrasion Test.
- 6. Shape tests

II. BITUMINOUSMATERIALS:

- 1. Penetration Test.
- 2. Ductility Test.
- 3. Softening Point Test.
- 4. Flash and fire point tests.

Textbooks:

1. G Venkatappa Rao, K Ramachandra Rao, Kausik Pahari and D V Bhavanna Rao "Highway Material Testing and Quality Control", I K International Publishing House Pvt. Limited, New Delhi.

- 1. Ajay K Duggal and Vijay P Puri "Laboratory Manual in Highway Engineering", New Age International (P) Limited, Publishers, New Delhi.
- 2. S K Khanna, C E G Justo and A Veeraraghavan "Highway Engineering", Nem Chand & Bros Publishers, Roorkee, Uttarakhand.

Course Title	Environn	nental	Engir	neering	g Laborat	ory	B. Tech, CE 5 th Semester				
Course	Category	L	Т	Р	Credits	Maximum Marks					
Code						Continu	Continuous Internal		Total		
						Ass	sessment	Exam			
1801516	PCC	00	00	02	01	50		50	100		
Mid Exan	n Duration: -	-					End Exam	Duration:	03.00 Hrs		
1. 17 2. TT ar 3. Fo ch 4. TT es	o get exposur he laboratory nd different so or effective v nloride demar he estimation timating BOI	e abou provie olids in vater tr nd are a statu D and	t water des kno water. reatmer ilso inc s of Ir COD o	and se owledge at, the luded. adustria of efflue	wage analy e of estima determinat ll effluents ent.	sis. ting varie ions of c will also	ous parameters optimum dosag o be taught in	s like P ^H , (ge of coag 1 the labo	Chlorides, ulant and ratory by		
Course C	Outcomes: O	n succ	essful c	omplet	ion of this	course, t	he student will	be able to			
CO 1	Identify the various indus	BIS an strial ai	d WHO nd agric) stand cultural	lards of wa purposes.	iter for de	omestic consu	mption an	d also for		

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1							2							2	

LIST OF EXPERIMENTS

- 1. Determination of pH and Turbidity
- 2. Determination of Conductivity and Total dissolved solids.
- 3. Determination of Alkalinity/Acidity.
- 4. Determination of Chlorides.
- 5. Determination and Estimation of total solids, organic solids and inorganic solids.
- 6. Determination of Dissolved Oxygen.
- 7. Determination of B.O.D
- 8. Determination of C.O.D
- 9. Determination of Optimum coagulant dose.
- 10. Determination of Chlorine demand.

Textbooks:

1. Dr. G Kotaiah and Dr. N Kumara Swamy "Environmental Engineering Lab Manual", Charotar Publishing House, Anand, Gujrat.

Reference Books:

1. Clair N Sawyer, Perry L Mccarty and Gene F Parkin "Chemistry for Environmental Engineering and Science", Tata McGraw-Hill Edition, New Delhi.